Implementation of Support Vector Machine and Radial Basis Function for Classification of Vegetarian Food Using Image Data

Authors

  • Williams Universal University
  • Fery Gunawan Universal University
  • Patrick Limuel Universal University
  • Akhmad Rezki Purnajaya Universal University

Keywords:

Vegetarian Food, Classification, SVM, RBF, Image Data

Abstract

The vegetarian diet has become increasingly popular in the 21st century due to its potential to reduce the risk of chronic and degenerative diseases. Vegetarians are individuals who do not consume animal products, either for religious or health reasons. However, it can be difficult to determine whether a particular food is vegetarian or non-vegetarian based on visual inspection alone. Therefore, this study successfully developed an SVM & RBF model in RStudio that can accurately differentiate between vegetarian and non-vegetarian foods based on image data. The model achieved an accuracy rate of 95%, specificity of 100%, sensitivity of 88.89%, and an AUC value of 94.44%. It can be concluded that the SVM & RBF model is capable of predicting data with high accuracy and effectively distinguishing between vegetarian and non-vegetarian classes.

References

L. Anggraini, W. Lestariana, S. Susetyowati, “Asupan gizi dan status gizi vegetarian pada komunitas vegetarian di Yogyakarta”, Jurnal Gizi Klinik Indonesia, vol. 11, no. 4, 2015.

D. Lestrina, G. Siahaan, and E. Nainggolan, “Gizi Indon,” vol. 39, no. 1, pp. 59–70, 2016, [Online]. Available: http://ejournal.persagi.org/go/59.

D. S. Rosiana, F. S. P. Prameswari, P. Novitasari, “Vegetarian Diet among Athletes on Nutrient Adequacy and Performance: Literature Review”, Journal of Applied Food and Nutrition, vol. 3, no. 1, Juni 2022.

Syahrum, Salim, “Metode Penelitian Kuantitatif”, Citapustaka Media, Bandung, 2012.

K. Supribadi, N. Khakhim, T. H. Purwanto, “Analisis Metode Support Vector Machine (Svm) untuk Klasifikasi Penggunaan Lahan Berbasis Penutup Lahan pada Citra Alos Avnir-2”, Majalah Geografi Indonesia, vol. 40, no. 1, 2021.

V. Wahyuningrum, “Penerapan Radial Basis Function Neural Network dalam Pengklasifikasian Daerah Tertinggal di Indonesia”, Journal of Statistical Application and Computational Statistics, vol. 12, no. 1, 2020.

Published

02-06-2023

How to Cite

Williams, Gunawan, F., Limuel, P., & Purnajaya, A. R. (2023). Implementation of Support Vector Machine and Radial Basis Function for Classification of Vegetarian Food Using Image Data. Journal of Digital Ecosystem for Natural Sustainability, 3(1), 5–8. Retrieved from https://journal.uvers.ac.id/index.php/jodens/article/view/123

Issue

Section

Articles