Penerapan Metode Radial Basis Function (RBF) dalam Mengklasifikasikan Penyakit Demam Berdarah

Authors

  • steffany Universitas Universal
  • Akhmad Rezki Purnajaya Universitas Universal
  • Rika Jelita Universitas Universal
  • Eva Tesvara Universitas Universal
  • Milson Nestelrody Universitas Universal
  • Joni Irwansyah Universitas Universal

Keywords:

Dengue Fever, Classification, Disease Prediction, Radial Basis Function

Abstract

Dengue fever is an arbovirus disease caused by dengue virus infection through the bite of the Aedes mosquito, Aedes aegypti. Signs or symptoms of dengue usually resemble ordinary viral infections, but can become more severe and cause other symptoms that can paralyze the activities of the patient who suffers from it. The initial symptoms of someone who is infected with the dengue virus will experience a fever within 4–6 days after being infected. Therefore, early diagnosis is needed whether a person is infected or not with dengue fever. Because if someone is late getting treatment by medical personnel, then this can lead to death. Prevention can be done by making the right predictions. Dengue fever disease prediction research is needed to assist medical personnel in making a diagnosis. To get a good level of accuracy, research collected data and used the Radial Basis Function (RBF) approach method. The results of the RBF prediction evaluation obtained are that the RBF model gets 100% accuracy, 100% sensitivity, 100% specificity, and 100% AUC value.

References

F. R. Azinar, "Model Buku Saku Dan Rapor Pemantauan Jentik Dalam Meningkatkan Perilaku Pemberantasan Sarang Nyamuk", Journal of Health Education, pp. 110-117, 2018.

I. D. Manuaba, I. W. P. Sutirtayasa, D. R. Dewi, "Immunopatogenesis Infeksi Virus Dengue", E-Jurnal Medika Udayana, pp. 1-11, 2013

Y. F. Waruwu, M. Zarlis, E. B. Nababan, M. S. Ziliwu, "Seleksi Atribut Pada Algoritma Radial Basis Function Neural Network Menggunakan Information Gain", Seminar Nasional Royal (SENAR) 2018, pp. 21-24, 2018.

D. H. Yohandy, I. M. N. Wiranata, T. Q. Ferbia, "Identifikasi Pola Penyakit Pada Citra Iris Mata Dengan RBF Neural Network", Jurnal Informatika, pp. 195-201, 2018.

A. W. S. Stefanus, (2016), "Model Prediksi Penyakit Ginjal Kronik Menggunakan Radial Basis Function", Jurnal Pseudocode, pp. 163-170, 2016.

C. Ashish, "Typhoid and Dengue Fever Symptoms Dataset", 2021, Retrieved from Kaggle: https://www.kaggle.com/discussions/general/91461#1188270.

W. Vira, "Penerapan Radial Basis Function Neural Network Dalam Pengklasifikasian Daerah Tertinggal Di Indonesia", Jurnal Aplikasi Statistika & Komputasi Statistik, pp. 37-54, 2020.

Published

31-05-2023

How to Cite

Steffany, Purnajaya, A. R., Jelita, R., Tesvara, E., Nestelrody, M., & Irwansyah , J. (2023). Penerapan Metode Radial Basis Function (RBF) dalam Mengklasifikasikan Penyakit Demam Berdarah. Journal of Digital Ecosystem for Natural Sustainability, 3(1), 1–4. Retrieved from https://journal.uvers.ac.id/index.php/jodens/article/view/133

Issue

Section

Articles