Simple Modeling of Laplace's Equation on Potential Using Finite Difference

Authors

  • Delia Meldra Universitas Ibnu Sina
  • Yopy Mardiansyah Institut Teknologi Batam

Abstract

Geo-electricity is a methods to measure potential in the earth’s surface. Laplace equation’s second orde is used in natural potential measurement. Finite difference method is used to solve this Laplace equation to get numeric solution. The solution figures the distribution of source potential that gotten from many sides of modeling domain.

References

Jhon M Reynolds, An Introduction to Applied an Environmental Geophysics. New York: John Wiley and Sons, 1997.

D. Meldra, “Rancangan Area Serapan Air Pada Pemodelan Potensial Listrik Topografi Landai,” J. Rekayasa Sist. Ind., vol. 3, no. 2, pp. 143–148, 2018.

H. Trijayanti and T. A. Cahyadi, “Aplikasi penggunaan Metode Finite Difference dalam pemodelan air tanah pada kasus pertambangan : literatur review,” J. Himasapta, vol. 7, no. 1, p. 21, Apr. 2022, doi: 10.20527/jhs.v7i1.5340.

J. Abidin, “Studi Awal Model Panas Bumi Dengan Menggunakan Metode Beda Hingga,” Front. J. SAINS DAN Teknol., vol. 1, no. 3, pp. 237–244, 208AD.

W. M. Telford, Applied Geophysics Second Edition. Australia: Cambridge University Press, 1990.

D. Meldra, “Pemodelan Kontinu 2-D Berbasis Efek Elektokinetik Dengan Finite Element Pendekatan Galerkin,” J. Rekayasa Sist. Ind., vol. 4, no. 2, pp. 93–97, 2019, doi: 10.33884/jrsi.v4i2.1277.

G. A. E. Windhari, N. P. E. L. Dewi, and I. G. D. Atmaja, “Identifikasi Potensi Akuifer Dengan Metode Schlumberger di Dusun Mangkung Lauk, Desa Mangkung, Kecamatan Praya,” Empiricism J., vol. 3, no. 2, pp. 358–364, Dec. 2022, doi: 10.36312/ej.v3i2.1041.

I. F. Putra, M. Syafwan, M. R. Helmi, and A. Nazra, “BENTUK EKSPLISIT RUMUS BEDA MAJU DAN BEDA MUNDUR UNTUK TURUNAN KE-N DENGAN ORDE KETELITIAN KE-N BERDASARKAN DERET TAYLOR,” J. Lebesgue J. Ilm. Pendidik. Mat. Mat. dan Stat., vol. 4, no. 3, pp. 1675–1686, Dec. 2023, doi: 10.46306/lb.v4i3.461.

J. Stewart, Calculus: early transcendentals. Cengage Learning, 2012.

T. Widiarsono, Tutorial Praktis Belajar Matlab. Jakarta, 2005.

G. E. Urroz, Numerical Solution of Laplace Equation. 2004.

Downloads

Published

30-09-2024

How to Cite

[1]
D. Meldra and Y. Mardiansyah, “Simple Modeling of Laplace’s Equation on Potential Using Finite Difference”, Greeners, vol. 2, no. 1, pp. 22–25, Sep. 2024.